Механика деформируемого твердого тела — наука, в которой изучаются законы движения и равновесия твердых тел в условиях их деформирования при различных воздействиях.
Деформация твердого тела заключается в том, что изменяются его размеры и форма. С этим свойством твердых тел, как элементов конструкций, сооружений и машин, инженер постоянно
встречается в своей практической деятельности. Например, стержень под действием растягивающих сил удлиняется, балка, нагруженная поперечной нагрузкой, изгибается
и т. п.
При действии нагрузок в твердых телах возникают внутренние силы, которые характеризуют сопротивление тела деформации. Внутренние силы, отнесенные к единице площади, называются
напряжениями.
Исследование напряженного и деформированного состояний твердых тел при различных воздействиях составляет осyовную задачу механики деформируемого твердого тела.
Сопротивление материалов, теория упругости, теория пластичности, теория ползучести являются разделами механики деформируемого твердого тела. В технических, в частности, строительных вузах эти разделы имеют прикладной характер и служат для создания и обоснования методов расчета инженерных конструкций и сооружений на прочность, жесткость и устойчивость. Правильное решение этих задач является основой при расчете и проектировании конструкций, машин, механизмов и т. п., поскольку оно обеспечивает их надежность в течение всего периода эксплуатации.
Под прочностью обычно понимается способность безопасной работы конструкции, сооружения или их отдельных элементов, которая исключала бы возможность их разрушения. Потеря (исчерпание) прочности показана на рис. 1.1 на примере разрушения балки при действии силы Р.
Процесс исчерпания прочности без изменения схемы работы конструкции или ее формы равновесия обычно сопровождается нарастанием характерных явлений, таких, например, как появление и развитие трещин.
Устойчивость конструкции — это ее способность сохранять вплоть до разрушения первоначальную форму равновесия. Например, для стержня на рис. 1.2, а до определенного значения сжимающей силы первоначальная прямолинейная форма равновесия будет устойчивой. Если сила превысит некоторое критическое значение, то устойчивым будет изогнутое состояние стержня (рис. 1.2, 6). При этом стержень будет работать не только на сжатие, но и на изгиб, что приведет к быстрому его разрушению из-за потери устойчивости. Потеря устойчивости очень опасна для сооружений и конструкций, поскольку она происходит в течение короткого промежутка времени. Жесткость конструкции характеризует ее способность препятствовать развитию деформаций (удлинений, прогибов, углов закручивания и т. п.). Обычно жесткость конструкций и сооружений регламентируется нормами проектирования. Например, максимальные прогибы балок (рис. 1.3), применяемых в строительстве, лежат в пределах f=(l/200-,-1/1000)/, углы закручивания валов обычно не превышают 2° на 1 метр длины вала и т. д. Решение проблем надежности конструкций сопровождается поисками наиболее оптимальных вариантов с точки зрения эффективности работы или эксплуатации конструкций, расхода материалов, технологичности возведения или изготовления.
Сопротивление материалов в технических вузах является по существу первой в процессе обучения инженерной дисциплиной в области проектирования и расчета сооружений и машин. В курсе
сопротивления материалов в основном излагаются методы расчета наиболее простых конструктивных элементов-стержней (балок, брусьев). При этом вводятся различные упрощающие гипотезы, с помощью которых выводятся простые расчетные формулы. В сопротивлении материалов широко используются методы теоретической механики и высшей математики, а также данные экспериментальных исследований. На сопротивление материалов, как на базовую дисциплину, в значительной степени опираются дисциплины, изучаемые студентами на старших
курсах, такие, как строительная механика, строительные конструкции, испытание сооружений, динамика и прочность машин и т. д.
Теория упругости, теория ползучести, теория пластичности являются наиболее общими разделами механики деформируемого твердого тела. Вводимые в этих разделах гипотезы носят общий характер и в основном касаются поведения материала тела в процессе его деформирования под действием нагрузки.
В теориях упругости, пластичности и ползучести используются по возможности точные или достаточно строгие методы аналитического решения задач, что требует привлечения специальных
разделов математики. Получаемые здесь результаты позволяют дать методы расчета более сложных конструктивных элементов, например, пластин и оболочек, разработать методы
решения специальных задач, таких, например, как задача о концентрации напряжений вблизи отверстий, а также установить области использования решений сопротивления материалов. В тех случаях, когда механика деформируемого твердого тела -не может дать достаточно простые и доступные для инженерной практики методы расчета конструкций, используются различные экспериментальные методы определения напряжений и деформаций в реальных конструкциях . или в их моделях {например, метод тензометрии, поляризационно-оптический метод, метод голографии и т. п.). Из всех разделов механики деформируемого твердого тела наибольший исторический путь развития имеет сопротивление материалов. Формирование сопротивления материалов как науки можно отнести к середине прошлого века, что связано с интенсивным развитием промышленности и строительством железных дорог.
Запросы инженерной практики дали импульс исследованиям в области прочности и надежности конструкций, сооружений и машин. Ученые и инженеры в этот период разработали достаточно простые методы расчета элементов конструкций и заложили основы дальнейшего развития науки о прочности.
Теория упругости начала развиваться в начале прошлого века как математическая наука, не имеющая прикладного характера. Теория пластичности и теория ползучести как самостоятельные разделы механики деформируемого твердого тела сформировались уже в наше время.
Механика деформируемого твердого тела является во всех своих разделах постоянно развивающейся наукой. Разрабатываются новые методы определения напряженного и деформированного состояний тел. Широкое применение получили различные численные методы решения задач, что связано с внедрением и использованием ЭВМ практически во всех сферах науки и инженерной практики.